Index

PMP.PearsonType1Type
PearsonType1(a,b,α,β)

The Pearson Type 1 distribution with shape parameters α and β defined on the interval (a, b) has the probability density function for $a<y<b$

\[f(y; a, b, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \frac{(y-a)^{\alpha-1} (b-y)^{\beta-1}}{(b-a)^{\alpha+\beta-1}},\]

and 0 elsewhere.

PearsonType1()   # Pearson Type 1 distribution on the unit interval with shape parameters (1,1) i.e. Uniform(0, 1)


params(d)        # Get the parameters, i.e. (a, b, α, β)

location(d)      # Get the location parameter, i.e. a
scale(d)         # Get the scale parameter, i.e. b-a
shape(d)         # Get the shape parameters, i.e. (α, β)

External links

source
PMP.PearsonType1bType
PearsonType1b(b,α,β)

The Pearson Type 1 distribution with shape parameters α and β defined on the interval (0, b) has the probability density function for $0<y<b$

\[f(y; b, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \frac{y^{\alpha-1} (b-y)^{\beta-1}}{b^{\alpha+\beta-1}},\]

and 0 elsewhere.

PearsonType1b()   # Pearson Type 1 distribution on the unit interval with shape parameters (1,1) i.e. Uniform(0, 1)


params(d)        # Get the parameters, i.e. (b, α, β)

scale(d)         # Get the scale parameter, i.e. b
shape(d)         # Get the shape parameters, i.e. (α, β)

External links

source
PMP.PearsonType1cType
PearsonType1c(b,μ,ν)

The Pearson Type 1 distribution with shape parameters μ and ν defined on the interval (0, b) has the probability density function for $0<y<b$

\[f(y; b, \mu, \nu) = \frac{1}{B(\mu, \nu)} \frac{y^{\mu\nu-1} (b-y)^{\nu(1-\mu) - 1}}{b^{\nu-1}},\]

and 0 elsewhere.

PearsonType1c()   # Pearson Type 1 distribution on the unit interval with shape parameters (1/2,2) i.e. Uniform(0, 1)


params(d)        # Get the parameters, i.e. (b, μ, ν)

scale(d)         # Get the scale parameter, i.e. b
shape(d)         # Get the shape parameters, i.e. (μ, ν)
source
Base.maximumMethod
maximum(pd::PearsonType1b)

Obtain the upper limit of the distribution pd, b.

source
Base.maximumMethod
maximum(pd::PearsonType1)

Obtain the upper limit of the distribution pd, b.

source
Base.minimumMethod
minimum(pd::PearsonType1b)

Obtain the lower limit of the distribution pd, 0.

source
Base.minimumMethod
minimum(pd::PearsonType1)

Obtain the lower limit of the distribution pd, a.

source
Base.randMethod
rand(rng::Random.AbstractRNG, pd::PearsonType1b)

Generate a random realization of distribution pd.

source
Base.randMethod
rand(rng::Random.AbstractRNG, pd::PearsonType1)

Generate a random realization of the distribution pd.

source
Distributions.cdfMethod
cdf(pd::PearsonType1, x::Real)

Compute the cumulative distribution function value of pd at point x.

source
Distributions.cdfMethod
cdf(pd::PearsonType1b, x::Real)

Compute the cumulative distribution function value of pd at point x.

source
Distributions.insupportMethod
insupport(pd::PearsonType1, x::Real)

Establish if the point x is within the support of the distribution pd.

source
Distributions.insupportMethod
insupport(pd::PearsonType1b, x::Real)

Establish if the point x is within the support of the distribution pd.

source
Distributions.logpdfMethod
logpdf(pd::PearsonType1, x::Real)

Compute the log of the value of the probability density function of pd at point x.

source
Distributions.logpdfMethod
logpdf(pd::PearsonType1b, x::Real)

Compute the log of the value of the probability density function of pd at point x.

source
Distributions.logpdfMethod
logpdf(pd::PearsonType1c, x::Real)

Compute the log of the value of the probability density function of pd at point x.

source
PMP.PMP_GEVMethod
PMP_GEV(rain::Vector{<:Real}, date::Vector{DateTime}, return_time::Real, d₁::Int, d₂::Int)
PMP_GEV(rain::Vector{<:Real}, date::Vector{DateTime}, return_time::Real)

Estimation of the PMP by univariate GEV method, with a chosen return time.

source
PMP.PMP_HershfieldMethod
PMP_Hershfield(rain_daily::Vector{<:Real}, date::Vector{DateTime}, K::Real, d₁::Int, d₂::Int)
PMP_Hershfield(rain_daily::Vector{<:Real}, date::Vector{DateTime}, K::Real)
PMP_Hershfield(rain_daily::Vector{<:Real}, date::Vector{DateTime}, d₁::Int, d₂::Int)
PMP_Hershfield(rain_daily::Vector{<:Real}, date::Vector{DateTime})

Estimation of the PMP by Hershfield empirical method.

source
PMP.PMP_mmFunction
PMP_mm(rain_storm::Vector{<:Real}, pw_storm::Vector{<:Real}, date_storm::Vector{DateTime}, pw_max::Vector{<:Real})
PMP_mm(rain_storm::Vector{<:Real}, pw_storm::Vector{<:Real}, date_storm::Vector{Date}, pw_max::Vector{<:Real})

Estimation of the PMP by moisture maximization.

source
PMP.PW_maxFunction
PW_max(pw::Vector{<:Real}, date::Vector{DateTime})
PW_max(pw::Vector{<:Real}, date::Vector{Date})

Estimate the maximum precipitable water for each month of interest.

source
PMP.PW_return_periodFunction
PW_return_period(pw::Vector{<:Real}, date::Vector{DateTime}, return_period::Int=100)
PW_return_period(pw::Vector{<:Real}, date::Vector{Date}, return_period::Int=100)

Estimate the precipitable water return value for each month of interest for a given return period.

source
PMP.PW_stormFunction
PW_storm(storm_date::Vector{DateTime}, dewpoint::Vector{<:Real}, dewpoint_date::Vector{DateTime}, d₂::Int, frequency::Int, time_int::Int=12)
PW_storm(storm_date::Vector{Date}, dewpoint::Vector{<:Real}, dewpoint_date::Vector{DateTime}, d₂::Int, frequency::Int, time_int::Int=12)
PW_storm(storm_date::Vector{DateTime}, dewpoint::Vector{<:Real}, dewpoint_date::Vector{Date}, d₂::Int, frequency::Int, time_int::Int=12)
PW_storm(storm_date::Vector{Date}, dewpoint::Vector{<:Real}, dewpoint_date::Vector{Date}, d₂::Int, frequency::Int, time_int::Int=12)

Get the precipitable water for each storm.

source
PMP.datasetMethod
dataset(name::String)::DataFrame

Load the dataset associated with name.

Datasets available:

  • rain: observed precipitations (in mm) recorded at the Montréal-Trudeau International Airport;
  • dewpoint: observed dew point (in °C) recorded at the Montréal-Trudeau International Airport.

Examples

julia> PMP.dataset("rain")
source
PMP.dewpoint_to_PWMethod
dewpoint_to_PW(dew_data::Real)

Convert dew point observation in precipitable water (PW).

The relation is given by the Table A.1.1 of the annex of the "Manual on Estimation of Probable Maximum Precipitation (PMP)" (WMO, 2009).

source
PMP.get_max_persisting_dewFunction
get_max_persisting_dew(dewpoint::Vector{<:Real}, frequency::Int, time_int::Int=12)

Get the maximum persisting dewpoint of a storm for which data are taken at a given frequency.

The highest persisting dewpoint for some specified time interval is the value equalled or exceeded at all observations during the period (WMO, 2009).

source
PMP.logcdfMethod
logcdf(pd::PearsonType1, x::Real)

Compute the log cumulative distribution function value of pd at point x.

source
PMP.logcdfMethod
logcdf(pd::PearsonType1b, x::Real)

Compute the log cumulative distribution function value of pd at point x.

source
PMP.storm_maximizationFunction
storm_maximization(rain_storm::Vector{<:Real}, pw_storm::Vector{<:Real}, date_storm::Vector{DateTime}, pw_max::Vector{<:Real})
storm_maximization(rain_storm::Vector{<:Real}, pw_storm::Vector{<:Real}, date_storm::Vector{Date}, pw_max::Vector{<:Real})

Estimation of the maximization ratio, effective precipitation and maximized precipitation.

source
PMP.storm_selectionFunction
storm_selection(rain::Vector{<:Real}, date::Vector{DateTime}, p::Real, d₁::Int, d₂::Int=72)
storm_selection(rain::Vector{<:Real}, date::Vector{Date}, p::Real, d₁::Int, d₂::Int=72)
storm_selection(rain::Vector{<:Real}, date::Vector{DateTime}, p::Real)
storm_selection(rain::Vector{<:Real}, date::Vector{Date}, p::Real)

Select the PMP magnitude storms of each year.

The function choose the greatest precipitations of duration d₂ from data of duration d₁ while avoiding overlap. The function then select the p (a proportion) greatest storm of each year to be maximized.

source
PMP.total_precipitationFunction
total_precipitation(rain::Vector{<:Real}, date::Vector{DateTime}, d₁::Int, d₂::Int)
total_precipitation(rain::Vector{<:Real}, date::Vector{Date}, d₁::Int, d₂::Int)

Estimate the greatest precipitations taken over a given duration d₁ on a longer duration d₂.

The function choose the greatest precipitations of duration d₂ while avoiding overlap. Datasets rain and date should not contain missing data.

source
PMP.update_stepsizeMethod
update_stepsize(δ::Real, accrate::Real)

Update of the random walk step size for the Metropolis-Hastings algorithm

source
Statistics.stdMethod
std(pd::PearsonType1b)

Obtain the standard deviation of the distribution pd.

source
Statistics.stdMethod
std(pd::PearsonType1)

Obtain the standard deviation of the distribution pd.

source
StatsAPI.paramsMethod
shape(pd::PearsonType1)

Obtain all distribution parameters a, b, α and β.

source
StatsBase.entropyMethod
entropy(pd::PearsonType1b)
entropy(pd::PearsonType1b, base::Real)

Compute the entropy value of distribution pd, w.r.t. a given base if given.

source
StatsBase.entropyMethod
entropy(pd::PearsonType1)
entropy(pd::PearsonType1, base::Real)

Compute the entropy value of distribution pd, w.r.t. a given base if given.

source
StatsBase.kurtosisMethod
kurtosis(pd::PearsonType1b)
kurtosis(pd::PearsonType1b, correction::Bool)

Obtain the excess kurtosis (if correction = false) or kurtosis (if correction = true) of the distribution pd .

source
StatsBase.kurtosisMethod
kurtosis(pd::PearsonType1)
kurtosis(pd::PearsonType1, correction::Bool)

Obtain the excess kurtosis (if correction = false) or kurtosis (if correction = true) of the distribution pd .

source
StatsBase.modesMethod
modes(pd::PearsonType1b)

Obtain all modes (if this makes sense) of the distribution pd.

source
StatsBase.modesMethod
modes(pd::PearsonType1)

Obtain all modes (if this makes sense) of the distribution pd.

source