The following power-law relationship is used to model the level $(h)$ and discharge $(q)$ relationship:
\[q = a \, (h-b)^c;\]
where $a>0$ , $b \in \mathbb{R}$ and $c>0$ are the parameters. The function rcfit
finds the parameter estimates for a set of gaugings.
In the log space, the level-discharge relationship can be written as follows:
\[\log q = \log a + c \log (h-b),\]
which is almost a simple linear regression model.
With a set of $n \geq 3$ gaugings $\{(h_i,q_i), 1 \leq i \leq n\}$ , the optimal parameters $(a,b,c)$ are defined by the ones that minimize the sum of squares in the log space expressed as the following objective function:
\[f_{obj}(a,b,c) = \sum_{i=1}^n \left\{ \log q_i - \log a - c \log (h_i-b) \right\}^2.\]
Conditional on $b$ , the parameters $a$ and $c$ that minimize the sum of squares are the estimated linear regression coefficients. The search for the optimal $\left( -\infty < b < \min(h_i) \right)$ is performed with the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS). For each of the candidates for $b$ , the optimal values of $a$ and $c$ are calculated explicitly with the normal equations in linear regression.
The function rcfit
can be called with the gauging levels and discharges:
julia> rc = rcfit(h,q)
RatingCurve
data: Vector{Gauging}[194]
Parameters:
a = 76.38924950581774
b = 26.54581500260024
c = 1.653076883262162
The function returns a RatingCurve
type.
The function rcfit
can also be called with the vector of Gauging
as argument.
The quality of the fit can be visually assessed in the log space:
x = log.(h .- rc.b)
y = log.(q)
plot(x=x, y=y, Geom.point, intercept=[log(rc.a)], slope=[rc.c], Geom.abline(color="red", style=:dash))
x
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
-6
-3
0
3
6
-6.0
-5.8
-5.6
-5.4
-5.2
-5.0
-4.8
-4.6
-4.4
-4.2
-4.0
-3.8
-3.6
-3.4
-3.2
-3.0
-2.8
-2.6
-2.4
-2.2
-2.0
-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
-5
0
5
10
15
-3.0
-2.8
-2.6
-2.4
-2.2
-2.0
-1.8
-1.6
-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
y
and in the original space:
obs = layer(data, x=:Level, y=:Discharge, Geom.point)
model = layer(h->discharge(rc, h), 26, 32, Theme(default_color=colorant"red"))
plot(obs, model)
Level
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0
35.5
36.0
36.5
37.0
37.5
38.0
20
25
30
35
40
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0
22.2
22.4
22.6
22.8
23.0
23.2
23.4
23.6
23.8
24.0
24.2
24.4
24.6
24.8
25.0
25.2
25.4
25.6
25.8
26.0
26.2
26.4
26.6
26.8
27.0
27.2
27.4
27.6
27.8
28.0
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
30.2
30.4
30.6
30.8
31.0
31.2
31.4
31.6
31.8
32.0
32.2
32.4
32.6
32.8
33.0
33.2
33.4
33.6
33.8
34.0
34.2
34.4
34.6
34.8
35.0
35.2
35.4
35.6
35.8
36.0
36.2
36.4
36.6
36.8
37.0
37.2
37.4
37.6
37.8
38.0
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-2000
-1500
-1000
-500
0
500
1000
1500
2000
2500
3000
3500
-1500
-1400
-1300
-1200
-1100
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
-2000
0
2000
4000
-1500
-1450
-1400
-1350
-1300
-1250
-1200
-1150
-1100
-1050
-1000
-950
-900
-850
-800
-750
-700
-650
-600
-550
-500
-450
-400
-350
-300
-250
-200
-150
-100
-50
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500
2550
2600
2650
2700
2750
2800
2850
2900
2950
3000
Discharge
With the fitted rating curve, the discharge estimation at the level $h_0 = 29$ can be ontained with discharge
:
julia> discharge(rc, 29)
336.9604910589399
It is also possible to estimate the level corresponding to the discharge $q = 340$ with level
:
julia> level(rc, 340)
29.013368029435256
The rating curve parameter uncertainty can be estimated by bootstrap with the function cint
. For the Sainte-Anne example, the 95% confidence intervals are estimated using 100 boostrap samples of the original gaugings:
res = cint(rc, nboot=100)
println(string("a ∈ [", res[1,1]," , ", res[2,1]," ]"))
println(string("b ∈ [", res[1,2]," , ", res[2,2]," ]"))
println(string("c ∈ [", res[1,3]," , ", res[2,3]," ]"))
a ∈ [71.92358482426245 , 77.4028642010117 ]
b ∈ [26.515652625317752 , 26.553307015809576 ]
c ∈ [1.639584870097259 , 1.7091800842278784 ]
In the bootstrap resampling procedure, the gauging with the minimum level is always selected to ensure that the bootstrap rating curves are always defined on the original gauging level range.
The 95% confidence interval on the discharge estimation at $h_0 = 29$ can be obtained with pint
:
julia> pint(rc, 29)
2-element Vector{Float64}:
303.1402671607886
374.5539106306123
For more details on how this uncertainty is estimated, see the description of pint
.
The confidence interval for the whole level range of the rating curve can be plotted as follows:
h₀ = range(minimum(data.Level), stop=32, length=100)
# Discharge estimation for each level
q̂₀ = discharge.(rc, h₀)
# 95% confidence intervals of each discharge estimation
res = pint.(rc, h₀)
# Lower bound of interval
qmin = getindex.(res,1)
# Upper bound of interval
qmax = getindex.(res,2)
# Plotting the interval and the gaugings
obs = layer(data, x=:Level, y=:Discharge, Geom.point)
model = layer(x=h₀, y=q̂₀, Geom.line,
ymin = qmin, ymax = qmax, Geom.ribbon,
Theme(default_color=colorant"red"))
plot(obs, model)
Level
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0
35.5
36.0
36.5
37.0
37.5
38.0
20
25
30
35
40
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0
22.2
22.4
22.6
22.8
23.0
23.2
23.4
23.6
23.8
24.0
24.2
24.4
24.6
24.8
25.0
25.2
25.4
25.6
25.8
26.0
26.2
26.4
26.6
26.8
27.0
27.2
27.4
27.6
27.8
28.0
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
30.2
30.4
30.6
30.8
31.0
31.2
31.4
31.6
31.8
32.0
32.2
32.4
32.6
32.8
33.0
33.2
33.4
33.6
33.8
34.0
34.2
34.4
34.6
34.8
35.0
35.2
35.4
35.6
35.8
36.0
36.2
36.4
36.6
36.8
37.0
37.2
37.4
37.6
37.8
38.0
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-2000
-1500
-1000
-500
0
500
1000
1500
2000
2500
3000
3500
-1500
-1400
-1300
-1200
-1100
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
-2000
0
2000
4000
-1500
-1450
-1400
-1350
-1300
-1250
-1200
-1150
-1100
-1050
-1000
-950
-900
-850
-800
-750
-700
-650
-600
-550
-500
-450
-400
-350
-300
-250
-200
-150
-100
-50
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500
2550
2600
2650
2700
2750
2800
2850
2900
2950
3000
Discharge
The BIC (Bayesian Information Criterion) is an index of the quality of the curve fit to the gaugings. Assuming that the errors are normally distributed in the log space, the BIC of the curve in log space can be obtained as follows:
$\operatorname{bic} = n \log \hat\sigma_e^2 + 3 \log n,$
where $n$ corresponds to the number of gaugings, $\hat\sigma_e^2$ corresponds to the variance of the errors in the log space and the value 3 stands for the number of parameters.
The BIC of a fitted rating curve can be obtained with the function bic
:
julia> bic(rc)
-1168.4783580168496
The rating curve can also be fit to the gaugings by requiring the curve to pass through a particular point. The curve obtained is the one that minimizes the sum of the squared errors among the curves that pass through the given point.
For example, if one wants the curve to pass through the last gauging, this constraint can be added by using rcfit
with the contraint arguement:
# Extract the level and discharge of the last gauging
Gₘ = maximum(G)
h̃ = level(Gₘ)
q̃ = discharge(Gₘ)
# Fit the constrained curve
constrained_rc = rcfit(G, [h̃, q̃])
RatingCurve
data: Vector{Gauging}[194]
Parameters:
a = 80.73298733291215
b = 26.57624202035966
c = 1.5708653243496047
The constrained curve can be plotted in the usual way:
obs = layer(data, x=:Level, y=:Discharge, Geom.point)
model = layer(h->discharge(constrained_rc, h), 26, 32, Theme(default_color=colorant"red"))
plot(obs, model)
Level
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0
35.5
36.0
36.5
37.0
37.5
38.0
20
25
30
35
40
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0
22.2
22.4
22.6
22.8
23.0
23.2
23.4
23.6
23.8
24.0
24.2
24.4
24.6
24.8
25.0
25.2
25.4
25.6
25.8
26.0
26.2
26.4
26.6
26.8
27.0
27.2
27.4
27.6
27.8
28.0
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
30.2
30.4
30.6
30.8
31.0
31.2
31.4
31.6
31.8
32.0
32.2
32.4
32.6
32.8
33.0
33.2
33.4
33.6
33.8
34.0
34.2
34.4
34.6
34.8
35.0
35.2
35.4
35.6
35.8
36.0
36.2
36.4
36.6
36.8
37.0
37.2
37.4
37.6
37.8
38.0
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-2000
-1500
-1000
-500
0
500
1000
1500
2000
2500
3000
3500
-1500
-1400
-1300
-1200
-1100
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
-2000
0
2000
4000
-1500
-1450
-1400
-1350
-1300
-1250
-1200
-1150
-1100
-1050
-1000
-950
-900
-850
-800
-750
-700
-650
-600
-550
-500
-450
-400
-350
-300
-250
-200
-150
-100
-50
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500
2550
2600
2650
2700
2750
2800
2850
2900
2950
3000
Discharge
The confidence interval on the discharge estimations can also be obtained in the usual way:
h₀ = range(minimum(data.Level), stop=32, length=100)
# Discharge estimation for each level
q̂₀ = discharge.(constrained_rc, h₀)
# 95% confidence intervals of each discharge estimation
res = pint.(constrained_rc, h₀)
# Lower bound of interval
qmin = getindex.(res,1)
# Upper bound of interval
qmax = getindex.(res,2)
# Plotting the interval and the gaugings
obs = layer(data, x=:Level, y=:Discharge, Geom.point)
model = layer(x=h₀, y=q̂₀, Geom.line,
ymin = qmin, ymax = qmax, Geom.ribbon,
Theme(default_color=colorant"red"))
plot(obs, model)
Level
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5
28.0
28.5
29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0
35.5
36.0
36.5
37.0
37.5
38.0
20
25
30
35
40
20.0
20.2
20.4
20.6
20.8
21.0
21.2
21.4
21.6
21.8
22.0
22.2
22.4
22.6
22.8
23.0
23.2
23.4
23.6
23.8
24.0
24.2
24.4
24.6
24.8
25.0
25.2
25.4
25.6
25.8
26.0
26.2
26.4
26.6
26.8
27.0
27.2
27.4
27.6
27.8
28.0
28.2
28.4
28.6
28.8
29.0
29.2
29.4
29.6
29.8
30.0
30.2
30.4
30.6
30.8
31.0
31.2
31.4
31.6
31.8
32.0
32.2
32.4
32.6
32.8
33.0
33.2
33.4
33.6
33.8
34.0
34.2
34.4
34.6
34.8
35.0
35.2
35.4
35.6
35.8
36.0
36.2
36.4
36.6
36.8
37.0
37.2
37.4
37.6
37.8
38.0
h,j,k,l,arrows,drag to pan
i,o,+,-,scroll,shift-drag to zoom
r,dbl-click to reset
c for coordinates
? for help
?
-2000
-1500
-1000
-500
0
500
1000
1500
2000
2500
3000
3500
-1500
-1400
-1300
-1200
-1100
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
-2000
0
2000
4000
-1500
-1450
-1400
-1350
-1300
-1250
-1200
-1150
-1100
-1050
-1000
-950
-900
-850
-800
-750
-700
-650
-600
-550
-500
-450
-400
-350
-300
-250
-200
-150
-100
-50
0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
1150
1200
1250
1300
1350
1400
1450
1500
1550
1600
1650
1700
1750
1800
1850
1900
1950
2000
2050
2100
2150
2200
2250
2300
2350
2400
2450
2500
2550
2600
2650
2700
2750
2800
2850
2900
2950
3000
Discharge